Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
428237 | Information Processing Letters | 2008 | 5 Pages |
Abstract
In this paper, we prove polynomial running time bounds for an Ant Colony Optimization (ACO) algorithm for the single-destination shortest path problem on directed acyclic graphs. More specifically, we show that the expected number of iterations required for an ACO-based algorithm with n ants is for graphs with n nodes and m edges, where ρ is an evaporation rate. This result can be modified to show that an ACO-based algorithm for One-Max with multiple ants converges in expected iterations, where n is the number of variables. This result stands in sharp contrast with that of Neumann and Witt, where a single-ant algorithm is shown to require an exponential running time if ρ=O(n−1−ε) for any ε>0.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics