Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
428361 | Information Processing Letters | 2007 | 8 Pages |
Abstract
The primal-dual scheme has been used to provide approximation algorithms for many problems. Goemans and Williamson gave a (2−1/(n−1))-approximation for the Prize-Collecting Steiner Tree Problem that runs in O(n3logn) time—it applies the primal-dual scheme once for each of the n vertices of the graph. We present a primal-dual algorithm that runs in O(n2logn), as it applies this scheme only once, and achieves the slightly better ratio of (2−2/n). We also show a tight example for the analysis of the algorithm and discuss briefly a couple of other algorithms described in the literature.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics