Article ID Journal Published Year Pages File Type
428445 Information Processing Letters 2006 5 Pages PDF
Abstract

Recently, S. Müller developed a generalized Atkin algorithm for computing square roots, which requires two exponentiations in finite fields GF(q) when . In this paper, we present a simple improvement to it and the improved algorithm requires only one exponentiation for half of squares in finite fields GF(q) when . Furthermore, in finite fields GF(pm), where and m is odd, we reduce the complexity of the algorithm from O(m3log3p) to O(m2log2p(logm+logp)) using the Frobenius map and normal basis representation.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics