Article ID Journal Published Year Pages File Type
428934 Information Processing Letters 2006 6 Pages PDF
Abstract

A graph G is the k-leaf power of a tree T if its vertices are leaves of T such that two vertices are adjacent in G if and only if their distance in T is at most k. Then T is the k-leaf root of G. This notion was introduced and studied by Nishimura, Ragde, and Thilikos motivated by the search for underlying phylogenetic trees. Their results imply a O(n3) time recognition algorithm for 3-leaf powers. Later, Dom, Guo, Hüffner, and Niedermeier characterized 3-leaf powers as the (bull, dart, gem)-free chordal graphs. We show that a connected graph is a 3-leaf power if and only if it results from substituting cliques into the vertices of a tree. This characterization is much simpler than the previous characterizations via critical cliques and forbidden induced subgraphs and also leads to linear time recognition of these graphs.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics