Article ID Journal Published Year Pages File Type
429111 Information Processing Letters 2010 4 Pages PDF
Abstract

We propose a generalized version of the Granularity-Enhanced Hamming (GEH) distance for use in k-NN queries in non-ordered discrete data spaces (NDDS). The use of the GEH distance metric improves search semantics by reducing the degree of non-determinism of k-NN queries in NDDSs. The generalized form presented here enables the GEH distance to be used for a much greater variety of scenarios than was possible with the original form.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics