Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
429153 | Information Processing Letters | 2008 | 6 Pages |
Abstract
For a family F of graphs, a graph U is said to be F-induced-universal if every graph of F is an induced subgraph of U. We give a construction for an induced-universal graph for the family of graphs on n vertices with degree at most k. For k even, our induced-universal graph has O(nk/2) vertices and for k odd it has O(nāk/2āā1/klog2+2/kn) vertices. This construction improves a result of Butler by a multiplicative constant factor for the even case and by almost a multiplicative n1/k factor for the odd case. We also construct induced-universal graphs for the class of oriented graphs with bounded incoming and outgoing degree, slightly improving another result of Butler.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics