Article ID Journal Published Year Pages File Type
429220 Information Processing Letters 2007 9 Pages PDF
Abstract

This letter presents a formal stochastic convergence analysis of the standard particle swarm optimization (PSO) algorithm, which involves with randomness. By regarding each particle's position on each evolutionary step as a stochastic vector, the standard PSO algorithm determined by non-negative real parameter tuple {ω,c1,c2} is analyzed using stochastic process theory. The stochastic convergent condition of the particle swarm system and corresponding parameter selection guidelines are derived.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics