Article ID Journal Published Year Pages File Type
429650 Journal of Computer and System Sciences 2011 5 Pages PDF
Abstract

Normalized information distance (NID) uses the theoretical notion of Kolmogorov complexity, which for practical purposes is approximated by the length of the compressed version of the file involved, using a real-world compression program. This practical application is called ‘normalized compression distance’ and it is trivially computable. It is a parameter-free similarity measure based on compression, and is used in pattern recognition, data mining, phylogeny, clustering, and classification. The complexity properties of its theoretical precursor, the NID, have been open. We show that the NID is neither upper semicomputable nor lower semicomputable.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics