Article ID Journal Published Year Pages File Type
429674 Journal of Computer and System Sciences 2010 18 Pages PDF
Abstract

It is well known that modal satisfiability is PSPACE-complete (Ladner (1977) [21]). However, the complexity may decrease if we restrict the set of propositional operators used. Note that there exist an infinite number of propositional operators, since a propositional operator is simply a Boolean function. We completely classify the complexity of modal satisfiability for every finite set of propositional operators, i.e., in contrast to previous work, we classify an infinite number of problems. We show that, depending on the set of propositional operators, modal satisfiability is PSPACE-complete, coNP-complete, or in P. We obtain this trichotomy not only for modal formulas, but also for their more succinct representation using modal circuits. We consider both the uni-modal and the multi-modal cases, and study the dual problem of validity as well.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics