Article ID Journal Published Year Pages File Type
429948 Journal of Computer and System Sciences 2006 27 Pages PDF
Abstract

Finding explicit extractors is an important derandomization goal that has received a lot of attention in the past decade. Previous research has focused on two approaches, one related to hashing and the other to pseudorandom generators. A third view, regarding extractors as good error correcting codes, was noticed before. Yet, researchers had failed to build extractors directly from a good code without using other tools from pseudorandomness. We succeed in constructing an extractor directly from a Reed–Muller code. To do this, we develop a novel proof technique.Furthermore, our construction is the first to achieve degree close to linear. In contrast, the best previous constructions brought the log of the degree within a constant of optimal, which gives polynomial degree. This improvement is important for certain applications. For example, it was used [E. Mossel, C. Umans, On the complexity of approximating the VC dimension, J. Comput. System Sci. 65 (2002) 660–671] to show that approximating VC dimension to within a factor of N1−δ is AM-hard for any positive δ.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics