Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
430114 | Journal of Computer and System Sciences | 2010 | 20 Pages |
Abstract
We study the relation of autoreducibility and mitoticity for polylog-space many-one reductions and log-space many-one reductions. For polylog-space these notions coincide, while proving the same for log-space is out of reach. More precisely, we show the following results with respect to nontrivial sets and many-one reductions:1.polylog-space autoreducible ⇔ polylog-space mitotic,2.log-space mitotic ⇒ log-space autoreducible ⇒ -space mitotic,3.relative to an oracle, log-space autoreducible ⇏ log-space mitotic. The oracle is an infinite family of graphs whose construction combines arguments from Ramsey theory and Kolmogorov complexity.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics