Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
430297 | Journal of Computer and System Sciences | 2012 | 19 Pages |
Trees can be conveniently compressed with linear straight-line context-free tree grammars. Such grammars generalize straight-line context-free string grammars which are widely used in the development of algorithms that execute directly on compressed structures (without prior decompression). It is shown that every linear straight-line context-free tree grammar can be transformed in polynomial time into a monadic (and linear) one. A tree grammar is monadic if each nonterminal uses at most one context parameter. Based on this result, polynomial time algorithms are presented for testing whether a given (i) nondeterministic tree automaton or (ii) nondeterministic tree automaton with sibling-constraints or (iii) nondeterministic tree walking automaton, accepts a tree represented by a linear straight-line context-free tree grammar. It is also shown that if tree grammars are nondeterministic or non-linear, then reducing their numbers of parameters cannot be done without an exponential blow-up in grammar size.
► Straight-line linear context-free tree grammars are reduced to one-parameter grammars in polynomial time. ► This allows to execute various tree automata in polynomial time over the compressed grammars (without prior decompression). ► If grammars are nondeterministic or non-linear, then a reduction to one-parameter grammars cannot be done without an exponential blow-up in grammar size.