Article ID Journal Published Year Pages File Type
430512 Journal of Computer and System Sciences 2006 19 Pages PDF
Abstract

We formulate and (approximately) solve hierarchical versions of two prototypical problems in discrete location theory, namely, the metric uncapacitated k-median and facility location problems. Our work yields new insights into hierarchical clustering, a widely used technique in data analysis. For example, we show that every metric space admits a hierarchical clustering that is within a constant factor of optimal at every level of granularity with respect to the average (squared) distance objective. A key building block of our hierarchical facility location algorithm is a constant-factor approximation algorithm for an “incremental” variant of the facility location problem; the latter algorithm may be of independent interest.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics