Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
430931 | Journal of Discrete Algorithms | 2012 | 8 Pages |
Abstract
Let G=(V,E)G=(V,E) be a graph in which every vertex v∈Vv∈V has a weight w(v)⩾0w(v)⩾0 and a cost c(v)⩾0c(v)⩾0. Let SGSG be the family of all maximum-weight stable sets in G . For any integer d⩾0d⩾0, a minimum d-transversal in the graph G with respect to SGSG is a subset of vertices T⊆VT⊆V of minimum total cost such that |T∩S|⩾d|T∩S|⩾d for every S∈SGS∈SG. In this paper, we present a polynomial-time algorithm to determine minimum d-transversals in bipartite graphs. Our algorithm is based on a characterization of maximum-weight stable sets in bipartite graphs. We also derive results on minimum d-transversals of minimum-weight vertex covers in weighted bipartite graphs.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
C. Bentz, M.-C. Costa, C. Picouleau, B. Ries, D. de Werra,