Article ID Journal Published Year Pages File Type
431077 The Journal of Logic and Algebraic Programming 2008 10 Pages PDF
Abstract

Currently known sequent systems for temporal logics such as linear time temporal logic and computation tree logic either rely on a cut rule, an invariant rule, or an infinitary rule. The first and second violate the subformula property and the third has infinitely many premises. We present finitary cut-free invariant-free weakening-free and contraction-free sequent systems for both logics mentioned. In the case of linear time all rules are invertible. The systems are based on annotating fixpoint formulas with a history, an approach which has also been used in game-theoretic characterisations of these logics.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics