Article ID Journal Published Year Pages File Type
431287 The Journal of Logic and Algebraic Programming 2011 27 Pages PDF
Abstract

We present an algebraic approach to separation logic. In particular, we give an algebraic characterisation for assertions of separation logic, discuss different classes of assertions and prove abstract laws fully algebraically. After that, we use our algebraic framework to give a relational semantics of the commands of a simple programming language associated with separation logic. On this basis we prove the frame rule in an abstract and concise way, parametric in the operator of separating conjunction, of which two particular variants are discussed. In this we also show how to algebraically formulate the requirement that a command preserves certain variables. The algebraic view does not only yield new insights on separation logic but also shortens proofs due to a point free representation. It is largely first-order and hence enables the use of off-the-shelf automated theorem provers for verifying properties at an abstract level.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics