Article ID Journal Published Year Pages File Type
434017 Theoretical Computer Science 2014 16 Pages PDF
Abstract

The maximum bipartite matching problem, an important problem in combinatorial optimization, has been studied for a long time. In order to solve problems for very large structured graphs in reasonable time and space, implicit algorithms have been investigated. Any object to be manipulated is binary encoded and problems have to be solved mainly by functional operations on the corresponding Boolean functions. OBDDs are a popular data structure for Boolean functions, therefore, OBDD-based algorithms have been used as a heuristic approach to handle large input graphs. Here, two OBDD-based maximum bipartite matching algorithms are presented, which are the first ones using only a sublinear number of operations (with respect to the number of vertices of the input graph) for a problem unknown to be in NC, the complexity class that contains all problems computable in deterministic polylogarithmic time with polynomially many processors. Furthermore, the algorithms are experimentally evaluated.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,