Article ID Journal Published Year Pages File Type
434359 Theoretical Computer Science 2014 8 Pages PDF
Abstract

We present a novel approach for computing all maximum consecutive subsums in a sequence of positive integers in near-linear time. Solutions for this problem over binary sequences can be used for reporting existence of Parikh vectors in a bit string. Recently, several attempts have been made to build indexes for all Parikh vectors of a binary string in subquadratic time. However, no algorithm is known to date which can beat by more than a polylogarithmic factor the naive Θ(n2) procedure. We show how to construct a (1+ϵ)-approximate index for all Parikh vectors of a binary string in time, for any constant ϵ>0. Such index is approximate, in the sense that it leaves a small chance for false positives (no false negatives are possible). However, we can tune the parameters of the algorithm so that we can strictly control such a chance of error while still guaranteeing strong subquadratic running time.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics