Article ID Journal Published Year Pages File Type
434851 Theoretical Computer Science 2012 13 Pages PDF
Abstract

A self-stabilizing protocol guarantees that starting from any arbitrary initial configuration, a system eventually comes to satisfy its specification and keeps the specification forever. Although self-stabilizing protocols show excellent fault-tolerance against any transient faults (e.g. memory crash), designing self-stabilizing protocols is difficult and, what is worse, might be impossible due to the severe requirements. To circumvent the difficulty and impossibility, we introduce a novel notion of loose-stabilization, that relaxes the closure requirement of self-stabilization; starting from any arbitrary configuration, a system comes to satisfy its specification in a relatively short time, and it keeps the specification not forever but for a long time. To show the effectiveness and feasibility of this new concept, we present a probabilistic loosely-stabilizing leader election protocol in the Probabilistic Population Protocol (PPP) model of complete networks. Starting from any configuration, the protocol elects a unique leader within O(nNlogn) expected steps and keeps the unique leader for Ω(NeN) expected steps, where n is the network size (not known to the protocol) and N is a known upper bound of n. This result proves that introduction of the loose-stabilization circumvents the already-known impossibility result; the self-stabilizing leader election problem in the PPP model of complete networks cannot be solved without the knowledge of the exact network size.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics