Article ID Journal Published Year Pages File Type
435053 Theoretical Computer Science 2011 18 Pages PDF
Abstract

The Frequency Assignment Problem (FAP) is an important problem that arises in the design of radio networks, when a channel has to be assigned to each transceiver of the network. This problem is a generalization of the graph coloring problem. In this paper we study a general version of the FAP that can include adjacent frequency constraints. Using concepts from landscapes’ theory, we prove that this general FAP can be expressed as a sum of two elementary landscapes. Further analysis also shows that some subclasses of the problem correspond to a single elementary landscape. This allows us to compute the kind of neighborhood information that is normally associated with elementary landscapes. We also provide a closed form formula for computing the autocorrelation coefficient for the general FAP, which can be useful as an a priori indicator of the performance of a local search method.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics