Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
435253 | Theoretical Computer Science | 2010 | 16 Pages |
Full linear-time hybrid logic (HL) is a non-elementary and equally expressive extension of standard LTL + past obtained by adding the well-known binder operators ↓ and ∃. We investigate complexity and succinctness issues for HL in terms of the number of variables and nesting depth of binder modalities. First, we present direct automata-theoretic decision procedures for satisfiability and model-checking of HL, which require space of exponential height equal to the nesting depth of the binder modalities. The proposed algorithms are proved to be asymptotically optimal by providing matching lower bounds. Second, we show that, for the one-variable fragment of HL, the considered problems are elementary and, precisely, Expspace-complete. Finally, we show that, for all 0≤h