Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
435296 | Theoretical Computer Science | 2010 | 22 Pages |
Abstract
A theory of one-tape two-way one-head off-line linear-time Turing machines is essentially different from its polynomial-time counterpart since these machines are closely related to finite state automata. This paper discusses structural-complexity issues of one-tape Turing machines of various types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machines) that halt in linear time, where the running time of a machine is defined as the length of any longest computation path. We explore structural properties of one-tape linear-time Turing machines and clarify how the machines’ resources affect their computational patterns and power.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics