Article ID Journal Published Year Pages File Type
435576 Theoretical Computer Science 2010 16 Pages PDF
Abstract

A principal component analysis (PCA) neural network is developed for online extraction of the multiple minor directions of an input signal. The neural network can extract the multiple minor directions in parallel by computing the principal directions of the transformed input signal so that the stability-speed problem of directly computing the minor directions can be avoided to a certain extent. On the other hand, the learning algorithms for updating the net weights use constant learning rates. This overcomes the shortcoming of the learning rates approaching zero. In addition, the proposed algorithms are globally convergent so that it is very simple to choose the initial values of the learning parameters. This paper presents the convergence analysis of the proposed algorithms by studying the corresponding deterministic discrete time (DDT) equations. Rigorous mathematical proof is given to prove the global convergence. The theoretical results are further confirmed via simulations.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics