Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
435730 | Theoretical Computer Science | 2010 | 29 Pages |
Abstract
A text is a word together with an additional linear order on it. We study quantitative models for texts, i.e. text series which assign to texts elements of a semiring. We introduce an algebraic notion of recognizability following Reutenauer and Bozapalidis as well as weighted automata for texts combining an automaton model of Lodaya and Weil with a model of Ésik and Németh. After that we show that both formalisms describe the text series definable in a certain fragment of weighted logics as introduced by Droste and Gastin. In order to do so, we study certain definable transductions and show that they are compatible with weighted logics.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics