Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
436006 | Theoretical Computer Science | 2009 | 13 Pages |
We study the state complexity of certain simple languages. If A is an alphabet of k letters, then a k-language is a nonempty set of words of length k, that is, a uniform language of length k. We show that the minimal state complexity of a k-language is k+2, and the maximal, (kk−1−1)/(k−1)+2k+1. We prove constructively that, for every i between the minimal and maximal bounds, there is a language of state complexity i. We introduce a class of automata accepting sets of words that are permutations of A; these languages define a complete hierarchy of complexities between k2−k+3 and 2k+1. The languages of another class of automata, based on k-ary trees, define a complete hierarchy of complexities between 2k+1 and (kk−1−1)/(k−1)+2k+1. This provides new examples of uniform languages of maximal complexity.