Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
436105 | Theoretical Computer Science | 2009 | 6 Pages |
Abstract
Given a graph G, an integer k, and a demand set D={(s1,t1),…,(sl,tl)}, the k-Steiner Forest problem finds a forest in graph G to connect at least k demands in D such that the cost of the forest is minimized. This problem was proposed by Hajiaghayi and Jain in SODA’06. Thereafter, using a Lagrangian relaxation technique, Segev et al. gave the first approximation algorithm to this problem in ESA’06, with performance ratio O(n2/3logl). We give a simpler and faster approximation algorithm to this problem with performance ratio O(n2/3logk) via greedy approach, improving the previously best known ratio in the literature.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics