Article ID Journal Published Year Pages File Type
436113 Theoretical Computer Science 2007 24 Pages PDF
Abstract

Binary search trees are one of the most fundamental data structures. While the height of such a tree may be linear in the worst case, the average height with respect to the uniform distribution is only logarithmic. The exact value is one of the best studied problems in average-case complexity.We investigate what happens in between by analysing the smoothed height of binary search trees: Randomly perturb a given (adversarial) sequence and then take the expected height of the binary search tree generated by the resulting sequence. As perturbation models, we consider partial permutations, partial alterations, and partial deletions.On the one hand, we prove tight lower and upper bounds of roughly for the expected height of binary search trees under partial permutations and partial alterations, where n is the number of elements and p is the smoothing parameter. This means that worst-case instances are rare and disappear under slight perturbations. On the other hand, we examine how much a perturbation can increase the height of a binary search tree, i.e. how much worse well balanced instances can become.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics