Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4361589 | Cell Host & Microbe | 2007 | 12 Pages |
SummaryEnterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) maintain an extracellular lifestyle and use a type III secretion system to translocate effector proteins into the host cytosol. These effectors manipulate host pathways to favor bacterial replication and survival. NleA is an EHEC/EPEC- and related species-specific translocated effector protein that is essential for bacterial virulence. However, the mechanism by which NleA impacts virulence remains undetermined. Here we demonstrate that NleA compromises the Sec23/24 complex, a component of the mammalian COPII protein coat that shapes intracellular protein transport vesicles, by directly binding Sec24. Expression of an NleA-GFP fusion protein reduces the efficiency of cellular secretion by 50%, and secretion is inhibited in EPEC-infected cells. Direct biochemical experiments show that NleA inhibits COPII-dependent protein export from the endoplasmic reticulum. Collectively, these findings indicate that disruption of COPII function in host cells contributes to the virulence of EPEC and EHEC.