Article ID Journal Published Year Pages File Type
436517 Theoretical Computer Science 2006 38 Pages PDF
Abstract

The Dual Calculus, proposed recently by Wadler, is the outcome of two distinct lines of research in theoretical computer science:(A)Efforts to extend the Curry–Howard isomorphism, established between the simply-typed lambda calculus and intuitionistic logic, to classical logic.(B)Efforts to establish the tacit conjecture that call-by-value (CBV) reduction in lambda calculus is dual to call-by-name (CBN) reduction.This paper initially investigates relations of the Dual Calculus to other calculi, namely the simply-typed lambda calculus and the Symmetric lambda calculus. Moreover, Church–Rosser and Strong Normalization properties are proven for the calculus’ CBV reduction relation. Finally, extensions of the calculus to second-order types are briefly introduced.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics