Article ID Journal Published Year Pages File Type
436704 Theoretical Computer Science 2007 19 Pages PDF
Abstract

This paper proposes a notion of time complexity in splicing systems. The time complexity of a splicing system at length n is defined to be the smallest integer t such that all the words of the system having length n are produced within t rounds. For a function t from the set of natural numbers to itself, the class of languages with splicing system time complexity t(n) is denoted by . This paper presents fundamental properties of and explores its relation to classes based on standard computational models, both in terms of upper bounds and in terms of lower bounds. As to upper bounds, it is shown that for any function t(n) is included in ; i.e., the class of languages accepted by a t(n)-space-bounded non-deterministic Turing machine with one-way input head. Expanding on this result, it is shown that is characterized in terms of splicing systems: it is the class of languages accepted by a t(n)-space uniform family of extended splicing systems having production time O(t(n)) with the additional property that each finite automaton appearing in the family of splicing systems has at most a constant number of states.As to lower bounds, it is shown that for all functions t(n)≥logn, all languages accepted by a pushdown automaton with maximal stack height t(|x|) for a word x are in . From this result, it follows that the regular languages are in and that the context-free languages are in .

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics