Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
436739 | Theoretical Computer Science | 2007 | 11 Pages |
Abstract
This paper concerns construction of additive stretched spanners with few edges for n-vertex graphs having a tree-decomposition into bags of diameter at most δ, i.e., the tree-length δ graphs. For such graphs we construct additive 2δ-spanners with O(δn+nlogn) edges, and additive 4δ-spanners with O(δn) edges. This provides new upper bounds for chordal graphs for which δ=1. We also show a lower bound, and prove that there are graphs of tree-length δ for which every multiplicative δ-spanner (and thus every additive (δ−1)-spanner) requires Ω(n1+1/Θ(δ)) edges.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics