Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
436837 | Theoretical Computer Science | 2013 | 8 Pages |
Graph orientation is a fundamental problem in graph theory that has recently arisen in the study of signaling-regulatory pathways in protein networks. Given a graph and a list of source–target vertex pairs, one wishes to assign directions to the edges so as to maximize the number of pairs that admit a directed source-to-target path. When the input graph is undirected, a sub-logarithmic approximation is known for this problem. However, the approximability of the biologically-relevant variant, in which the input graph has both directed and undirected edges, was left open. Here we give the first approximation algorithms to this problem. Our algorithms provide a sub-linear guarantee in the general case, and logarithmic guarantees for structured instances.