Article ID Journal Published Year Pages File Type
436984 Theoretical Computer Science 2012 13 Pages PDF
Abstract

The binary perfect phylogeny model is too restrictive to model biological events such as back mutations. In this paper, we consider a natural generalization of the model that allows a special type of back mutation. We investigate the problem of reconstructing a near perfect phylogeny over a binary set of characters where characters are persistent: characters can be gained and lost at most once. Based on this notion, we define the problem of the Persistent Perfect Phylogeny (referred as P-PP). We restate the P-PP problem as a special case of the Incomplete Directed Perfect Phylogeny, called Incomplete Perfect Phylogeny with Persistent Completion, (refereed as IP-PP), where the instance is an incomplete binary matrix M having some missing entries, denoted by symbol ?, that must be determined (or completed) as 0 or 1 so that M admits a binary perfect phylogeny. We show that the IP-PP problem can be reduced to a problem over an edge colored graph since the completion of each column of the input matrix can be represented by a graph operation. Based on this graph formulation, we develop an exact algorithm for solving the P-PP problem that is exponential in the number of characters and polynomial in the number of species.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics