Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
437271 | Theoretical Computer Science | 2012 | 10 Pages |
Abstract
Let 2P3 denote the disjoint union of two paths on three vertices. A graph G that has no subgraph isomorphic to a graph H is called H-free. The Vertex Coloring problem is the problem to determine the chromatic number of a graph. Its computational complexity for triangle-free H-free graphs has been classified for every fixed graph H on at most 6 vertices except for the case H=2P3. This remaining case is posed as an open problem by Dabrowski, Lozin, Raman and Ries. We solve their open problem by showing polynomial-time solvability.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics