Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
437318 | Theoretical Computer Science | 2012 | 13 Pages |
We improve the running time of the general algorithmic technique known as Baker’s approach (1994) [1] on H-minor-free graphs from O(nf(|H|)) to O(f(|H|)nO(1)). The numerous applications include, e.g. a 2-approximation for coloring and PTASes for various problems such as dominating set and max-cut, where we obtain similar improvements.On classes of odd-minor-free graphs, which have gained significant attention in recent time, we obtain a similar acceleration for a variant of the structural decomposition theorem proved by Demaine et al. (2010) [20]. We use these algorithms to derive faster 2-approximations; furthermore, we present the first PTASes and subexponential FPT-algorithms for independent set and vertex cover on these graph classes using a novel dynamic programming technique.We also introduce a technique to derive (nearly) subexponential parameterized algorithms on H-minor-free graphs. Our technique applies, in particular, to problems such as Steiner tree, (directed) subgraph with a property, (directed) longest path, and (connected/independent) dominating set, on some or all proper minor-closed graph classes. We obtain as a corollary that all problems with a minor-monotone subexponential kernel and amenable to our technique can be solved in subexponential FPT-time onH-minor free graphs. This results in a general methodology for subexponential parameterized algorithms outside the framework of bidimensionality.