Article ID Journal Published Year Pages File Type
437318 Theoretical Computer Science 2012 13 Pages PDF
Abstract

We improve the running time of the general algorithmic technique known as Baker’s approach (1994) [1] on H-minor-free graphs from O(nf(|H|)) to O(f(|H|)nO(1)). The numerous applications include, e.g. a 2-approximation for coloring and PTASes for various problems such as dominating set and max-cut, where we obtain similar improvements.On classes of odd-minor-free graphs, which have gained significant attention in recent time, we obtain a similar acceleration for a variant of the structural decomposition theorem proved by Demaine et al. (2010) [20]. We use these algorithms to derive faster 2-approximations; furthermore, we present the first PTASes and subexponential FPT-algorithms for independent set and vertex cover on these graph classes using a novel dynamic programming technique.We also introduce a technique to derive (nearly) subexponential parameterized algorithms on H-minor-free graphs. Our technique applies, in particular, to problems such as Steiner tree, (directed) subgraph with a property, (directed) longest path, and (connected/independent) dominating set, on some or all proper minor-closed graph classes. We obtain as a corollary that all problems with a minor-monotone subexponential kernel and amenable to our technique can be solved in subexponential FPT-time onH-minor free graphs. This results in a general methodology for subexponential parameterized algorithms outside the framework of bidimensionality.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics