Article ID Journal Published Year Pages File Type
437545 Theoretical Computer Science 2011 11 Pages PDF
Abstract

Farey sequences of irreducible fractions between 0 and 1 can be related to graph constructions known as Farey graphs. These graphs were first introduced by Matula and Kornerup in 1979 and further studied by Colbourn in 1982, and they have many interesting properties: they are minimally 3-colorable, uniquely Hamiltonian, maximally outerplanar and perfect. In this paper, we introduce a simple generation method for a Farey graph family, and we study analytically relevant topological properties: order, size, degree distribution and correlation, clustering, transitivity, diameter and average distance. We show that the graphs are a good model for networks associated with some complex systems.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics