Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
437566 | Theoretical Computer Science | 2011 | 10 Pages |
This paper revisits the problem of indexing a text for approximate string matching. Specifically, given a text T of length n and a positive integer k, we want to construct an index of T such that for any input pattern P, we can find all its k-error matches in T efficiently. This problem is well-studied in the internal-memory setting. Here, we extend some of these recent results to external-memory solutions, which are also cache-oblivious. Our first index occupies O((nlogkn)/B) disk pages and finds all k-error matches with O((|P|+occ)/B+logknloglogBn) I/Os, where B denotes the number of words in a disk page. To the best of our knowledge, this index is the first external-memory data structure that does not require Ω(|P|+occ+poly(logn)) I/Os. The second index reduces the space to O((nlogn)/B) disk pages, and the I/O complexity is O((|P|+occ)/B+logk(k+1)nloglogn).