Article ID Journal Published Year Pages File Type
437577 Theoretical Computer Science 2011 16 Pages PDF
Abstract

Asynchronous automata are a model of communication processes with a control structure distributed on a set P of processes, global initializations and global accepting conditions. The well-known theorem of Zielonka states that they recognize exactly the class of regular Mazurkiewicz trace languages. The corresponding synthesis problem is, given a global specification A of any regular trace language L, to build an asynchronous automaton that recognizes L, automatically. Yet, all such existing constructions are quite involved and yield an explosion of the number of states in each process, which is exponential in both the sizes of A and P. In this paper, we introduce the particular case of distributed asynchronous automata, which require that the initializations and the accepting conditions are distributed as well. We present an original technique based on simple compositions/decompositions of these distributed asynchronous automata that results in the construction of smaller non-deterministic asynchronous automata: now, the number of states in each process is only polynomial in the size of A, but is still exponential in the size of P.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics