Article ID Journal Published Year Pages File Type
437951 Theoretical Computer Science 2009 24 Pages PDF
Abstract

Splicing systems are generative devices of formal languages, introduced by Head in 1987 to model biological phenomena on linear and circular DNA molecules. A splicing system is defined by giving an initial set I and a set R of rules. Some unanswered questions are related to the computational power of circular splicing systems. In particular, a still open question is to find a characterization of circular languages generated by finite circular splicing systems (i.e., circular splicing systems with both I and R finite sets). In this paper we introduce a special class of the latter systems named marked systems. We prove that a marked system S generates a regular circular language if and only if S satisfies a special (decidable) property. As a consequence, we are able to characterize the structure of these regular circular languages.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics