Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
437986 | Theoretical Computer Science | 2008 | 10 Pages |
Abstract
We define a self-map Pal:F2→F2 of the free group on two generators a,b, using automorphisms of F2 that form a group isomorphic to the braid group B3. The map Pal restricts to de Luca’s right iterated palindromic closure on the submonoid generated by a,b. We show that Pal is continuous for the profinite topology on F2; it is the unique continuous extension of de Luca’s right iterated palindromic closure to F2. The values of Pal are palindromes and coincide with the elements g∈F2 such that abg and bag are conjugate.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics