Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
437996 | Theoretical Computer Science | 2008 | 8 Pages |
Abstract
The centralizer of a language is the maximal language commuting with it. The question, raised by Conway in [J.H. Conway, Regular Algebra and Finite Machines, Chapman Hall, 1971], whether the centralizer of a rational language is always rational, recently received a lot of attention. In Kunc [M. Kunc, The power of commuting with finite sets of words, in: Proc. of STACS 2005, in: LNCS, vol. 3404, Springer, 2005, pp. 569–580], a strong negative answer to this problem was given by showing that even complete co-recursively enumerable centralizers exist for finite languages. Using a combinatorial game approach, we give here an incremental construction of rational languages embedding any recursive computation in their centralizers.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics