Article ID Journal Published Year Pages File Type
438133 Theoretical Computer Science 2008 9 Pages PDF
Abstract

Discrete tomography deals with the reconstruction of discrete sets from few projections. Assuming that the set to be reconstructed belongs to a certain class of discrete sets with some geometrical properties is a commonly used technique to reduce the number of possibly many different solutions of the same reconstruction problem. The average performance of reconstruction algorithms are often tested on such classes by choosing elements of a given class from uniform random distributions. This paper presents a general framework for generating discrete sets with disjoint connected components using uniform distributions. Especially, the uniform random generation of hv-convex discrete sets and Q-convex discrete sets according to the size of the minimal bounding rectangle are discussed.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics