Article ID Journal Published Year Pages File Type
438145 Theoretical Computer Science 2008 14 Pages PDF
Abstract

In the plane, the way to enclose the most area with a given perimeter and to use the shortest perimeter to enclose a given area, is always to use a circle. If we replace the plane by a regular tiling of it, and construct polyforms i.e. shapes as sets of tiles, things become more complicated. We need to redefine the area and perimeter measures, and study the consequences carefully. A spiral construction often provides, for every integer number of tiles (area), a shape that is most compact in terms of the perimeter or boundary measure; however it may not exhibit all optimal shapes. We characterize in this paper all shapes that have both shortest boundaries and maximal areas for three common planar discrete spaces.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics