Article ID Journal Published Year Pages File Type
438642 Theoretical Computer Science 2006 14 Pages PDF
Abstract

Branching programs are a well-established computation model for Boolean functions, especially read-once branching programs have been studied intensively. Exponential lower bounds for read-once branching programs are known for a long time. On the other hand, the problem of proving superpolynomial lower bounds for parity read-once branching programs is still open. In this paper restricted parity read-once branching programs are considered and an exponential lower bound on the size of the so-called well-structured parity graph-driven read-once branching programs for integer multiplication is proven. This is the first strongly exponential lower bound on the size of a parity nonoblivious read-once branching program model for an explicitly defined Boolean function. In addition, more insight into the structure of integer multiplication is yielded.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics