Article ID Journal Published Year Pages File Type
438681 Theoretical Computer Science 2013 16 Pages PDF
Abstract

Barrett, Hardy, and Kent have shown in 2005 that protocols for quantum key agreement exist, the security of which can be proven under the assumption that quantum or relativity theory is correct. More precisely, this is based on the non-local behavior of certain quantum systems, combined with the non-signaling postulate from relativity. An advantage is that the resulting security is independent of what (quantum) systems the legitimate parties’ devices operate on: they do not have to be trusted. Unfortunately, the protocol proposed by Barrett et al. cannot tolerate any errors caused by noise in the quantum channel. Furthermore, even in the error-free case it is inefficient: its communication complexity is Θ(1/ε) when forcing the attacker’s information below ε, even if only a single key bit is generated. Potentially, the problem can be solved by privacy amplification of relativistic — or non-signaling — secrecy. We show, however, that such privacy amplification is impossible with respect to the most important form of non-local behavior, and application of arbitrary hash functions.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics