Article ID Journal Published Year Pages File Type
438756 Theoretical Computer Science 2006 14 Pages PDF
Abstract

Given a matrix X composed of symbols, a bicluster is a submatrix of X obtained by removing some of the rows and some of the columns of X in such a way that each row of what is left reads the same string. In this paper, we are concerned with the problem of finding the bicluster with the largest area in a large matrix X. The problem is first proved to be NP-complete. We present a fast and efficient randomized algorithm that discovers the largest bicluster by random projections. A detailed probabilistic analysis of the algorithm and an asymptotic study of the statistical significance of the solutions are given. We report results of extensive simulations on synthetic data.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics