Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
438756 | Theoretical Computer Science | 2006 | 14 Pages |
Abstract
Given a matrix X composed of symbols, a bicluster is a submatrix of X obtained by removing some of the rows and some of the columns of X in such a way that each row of what is left reads the same string. In this paper, we are concerned with the problem of finding the bicluster with the largest area in a large matrix X. The problem is first proved to be NP-complete. We present a fast and efficient randomized algorithm that discovers the largest bicluster by random projections. A detailed probabilistic analysis of the algorithm and an asymptotic study of the statistical significance of the solutions are given. We report results of extensive simulations on synthetic data.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics