Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
438772 | Theoretical Computer Science | 2006 | 12 Pages |
Abstract
A real x is called h-bounded computable, for some function h:N→N, if there is a computable sequence (xs) of rational numbers which converges to x such that, for any n∈N, at most h(n) non-overlapping pairs of its members are separated by a distance larger than 2-n. In this paper we discuss properties of h-bounded computable reals for various functions h. We will show a simple sufficient condition for a class of functions h such that the corresponding h-bounded computable reals form an algebraic field. A hierarchy theorem for h-bounded computable reals is also shown. Besides we compare semi-computability and weak computability with the h-bounded computability for special functions h.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics