Article ID Journal Published Year Pages File Type
438933 Theoretical Computer Science 2012 10 Pages PDF
Abstract

In this paper, we initiate the study of designing approximation algorithms for Fault-Tolerant Group-Steiner (FTGS) problems. The motivation is to protect the well-studied group-Steiner networks from edge or vertex failures. In Fault-Tolerant Group-Steiner problems, we are given a graph with edge- (or vertex-) costs, a root vertex, and a collection of subsets of vertices called groups. The objective is to find a minimum-cost subgraph that has two edge- (or vertex-) disjoint paths from each group to the root. We present approximation algorithms and hardness results for several variants of this basic problem, e.g., edge-costs vs. vertex-costs, edge-connectivity vs. vertex-connectivity, and 2-connecting a single vertex vs. two distinct vertices from each group. The main contributions of our paper include the introduction of general structural lemmas on connectivity and a charging scheme that may find more applications in the future. Our algorithmic results are supplemented by inapproximability results, which are tight in some cases.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics