Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
439101 | Theoretical Computer Science | 2009 | 9 Pages |
Abstract
We revisit a technique of S. Lehr on automata and use it to prove old and new results in a simple way. We give a very simple proof of the 1986 theorem of Honkala that it is decidable whether a given k-automatic sequence is ultimately periodic. We prove that it is decidable whether a given k-automatic sequence is overlap-free (or squarefree, or cubefree, etc.). We prove that the lexicographically least sequence in the orbit closure of a k-automatic sequence is k-automatic, and use this last result to show that several related quantities, such as the critical exponent, irrationality measure, and recurrence quotient for Sturmian words with slope α, have automatic continued fraction expansions if α does.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics