Article ID Journal Published Year Pages File Type
439366 Theoretical Computer Science 2006 22 Pages PDF
Abstract

Predicate abstraction has emerged to be a powerful technique for extracting finite-state models from infinite-state systems, and has been recently shown to enhance the effectiveness of the reachability computation techniques for hybrid systems. Given a hybrid system with linear dynamics and a set of linear predicates, the verifier performs an on-the-fly search of the finite discrete quotient whose states correspond to the truth assignments to the input predicates. The success of this approach depends on the choice of the predicates used for abstraction. In this paper, we focus on identifying these predicates automatically by analyzing spurious counterexamples generated by the search in the abstract state-space. We present the basic techniques for discovering new predicates that will rule out closely related spurious counterexamples, optimizations of these techniques, implementation of these in the verification tool, and case studies demonstrating the promise of the approach.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics